Differentiation potential of parthenogenetic embryonic stem cells is improved by nuclear transfer.

نویسندگان

  • Takafusa Hikichi
  • Sayaka Wakayama
  • Eiji Mizutani
  • Yasuhiro Takashima
  • Satoshi Kishigami
  • Nguyen Van Thuan
  • Hiroshi Ohta
  • Hong-Thuy Bui
  • Shin-Ichi Nishikawa
  • Teruhiko Wakayama
چکیده

Parthenogenesis is the process by which an oocyte develops into an embryo without being fertilized by a spermatozoon. Although such embryos lack the potential to develop to full term, they can be used to establish parthenogenetic embryonic stem (pES) cells for autologous cell therapy in females without needing to destroy normally competent embryos. Unfortunately, the capacity for further differentiation of these pES cells in vivo is very poor. In this study, we succeeded in improving the potential of pES cells using a nuclear transfer (NT) technique. The original pES cell nuclei were transferred into enucleated oocytes, and the resulting NT embryos were used to establish new NT-pES cell lines. We established 84 such lines successfully (78% from blastocysts, 12% from oocytes). All examined cell lines were positive for several ES cell markers and had a normal extent of karyotypes, except for one original pES cell line and its NT-pES cell derivatives, in which all nuclei were triploid. The DNA methylation status of the differentially methylated domain H19 and differentially methylated region IG did not change after NT. However, the in vivo and in vitro differentiation potentials of NT-pES cells were significantly (two to five times) better than the original pES cells, judged by the production of chimeric mice and by in vitro differentiation into neuronal and mesodermal cell lines. Thus, NT could be used to improve the potential of pES cells and may enhance that of otherwise poor-quality ES cells. It also offers a new tool for studying epigenetics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Review Paper: Embryonic Stem Cell and Osteogenic Differentiation

Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells, including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cell...

متن کامل

Reprogramming by cytosolic extract of human embryonic stem cells improves dopaminergic differentiation potential of human adipose tissue-derived stem cells

The extract of pluripotent stem cells induces dedifferentiation of somatic cells with restricted plasticity. In this study, we used the extract of human embryonic stem cells (hESC) to dedifferentiate adipose tissue-derived stem cells (ADSCs) and examined the impact of this reprogramming event on dopaminergic differentiation of the cells. For this purpose, cytoplasmic extract of ESCs was prepare...

متن کامل

Nuclear Architecture and Epigenetics of Lineage Choice

Differentiation is an epigenetic process which is installed by changes of transcriptional programs over successive cellular divisions. A number of studies have reported the effects of biochemical modifications of chromatin (DNA and chromatin proteins) on the regulation of transcription. Although, these studies are able to explain how transcription of a given gene is regulated (toward activation...

متن کامل

Pancreatic Differentiation of Sox 17 Knock-in Mouse Embryonic Stem Cells in Vitro

The way to overcome current limitations in the generation of glucose-responsive insulin-producing cells is selective enrichment of the number of definitive endoderm (DE) progenitor cells. Sox17 is the marker of mesendoderm and definitive endoderm. The aim of the present research was to study the potential of Sox17 knock-in CGR8 mouse embryonic stem (ES) cells to differentiate into insulin produ...

متن کامل

Expression of Endoderm and Hepatic Specific Genes after in vitro Differentiation of Human Embryonic Stem Cells

Background: Human embryonic stem cells (hESC), which are derived from the inner cell mass of the blastocysts, have been considered to be pluripotent cells. In this study we examine the differentiating potential of hESC into hepatocytes by characterization of the expression of endoderm and liver-specific genes. Methods: hESC were cultivated in suspension to form aggregates, the embryoid bodies. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Stem cells

دوره 25 1  شماره 

صفحات  -

تاریخ انتشار 2007